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ABSTRACT 
This paper presents a boundary element formulation for the transient Stokes equations in which the well 
known closed form fundamental solution to the steady Stokes equations is employed and the time derivative 
is taken to the boundary with dual reciprocity method. This approach has the advantage of simplicity of 
formulation and implementation in relation to the alternative boundary element schemes previously 
presented. In addition in this paper the dual reciprocity method is presented in a more formal mathematical 
way using well established interpolation theories which guarantee the convergence of the method. Results 
are presented for a series of three-dimensional internal problems in which the accuracy of the method is 
shown. 
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INTRODUCTION 

The boundary element method is now a well established technique for the analysis of engineering 
problems. One of its main advantages is the considerable reduction in data preparation, in 
relation to domain methods, as only surface elements are necessary. The basis of the method is 
that a fundamental solution is used to take some or all of the terms in the governing equation 
to the boundary. 

Although theoretically any linear partial differential equation has a fundamental solution, in 
some cases this solution cannot be expressed in a closed form, requiring numerical integration 
in order to be evaluated. The use of such fundamental solutions for practical programming 
purposes is not very convenient. If the problem can be expressed in such a way that a simpler 
fundamental solution with a closed form may be used and some terms expressed as domain 
integrals, considerable computational advantage may be obtained. 

In early boundary element analysis the evaluation of domain integrals was done using cell 
integration, a technique, which, whilst effective and general, made the method lose its boundary 
only nature introducing an additional internal discretization. 

Several methods have been developed to take domain integrals to the boundary in order to 
eliminate the need for internal cells, one of the most effective to date being the dual reciprocity 
method (DRM). This method was introduced by Nardini and Brebbia1; the method is general 
and straightforward to apply. 

In this paper the boundary element method will be applied to non-permanent Stokes system 
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of equations: 

here, is the flow velocity, p is the fluid density, p is the pressure, μ is the dynamic viscosity, 
and Ώ is a bounded three-dimensional domain, with a surface S as contour, that we will consider 
to be of Lyapunov type. 

The velocity field satisfies the non-slip boundary condition on the surface S, i.e. ui(ξ) = Ui(ξ) 
for all ξ ∈ S. 

The above system of equations is a first approximation to the complete Navier-Stokes system 
of equations for incompressible flow, when the flow phenomena occur over a time scale of the 
order O (L2/v), where L is a characteristic length and v = μ/ρ is the kinematic viscosity, and 
the Reynolds' number, Re = UL/v, is small, then the acceleration term ∂ui/∂t is of the same 
order as the viscous terms, but the non-linear term will be O(Re) smaller than the remaining terms. 

This problem can be analysed using the following integral equation approaches. 
The fundamental solution to the full equations, , given by Ladyzhenskaya2, may be 

employed: 

where B(x, y, t) = (4πvt) -3/2 exp(— r2/4vt) is the fundamental solution of the heat equation, 
δik is the Kronecker delta, δ(t) is the Dirac delta function and r = |x — y|. 

This approach leads to a time-boundary integral equation, see for instance Gavze3. The 
principal difficulty encountered is that the above fundamental solution cannot be evaluated 
explicitly, requiring the use of numerical integration because of the integral seen in the first 
expression; on the other hand, the use of this formulation produces a boundary integral expression 
for the complete problem without domain terms. Another possibility is to transform the 
non-permanent Stokes system of equations to the frequency domain as done for instance by 
Pozrikidis4. For the transformed equation, a simple closed form fundamental solution exists, 
once again the resulting boundary integral equation does not contain domain terms. The main 
disadvantage of this approach is that it is necessary to carry out the inverse transform on the 
solution. 

An alternative approach, to be employed here, is to use the fundamental solution to the 
permanent Stokes equations, and express the time derivative as a domain integral. This 
fundamental solution has a simple closed form, however the domain integral will introduce extra 
numerical computations. 

A convenient method for taking the domain integral to the boundary is the dual reciprocity 
method. In this way a boundary integral equation will be obtained without domain terms, using 
a closed form fundamental solution and without the need to recourse to inverse transforms. 
This approach has been suggested by Jin and Brown5 for the two-dimensional case; however, 
no numerical implementation was carried out. 
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DUAL RECIPROCITY METHOD 

Consider the unsteady Stokes equation written in a non-homogeneous steady form: 

the integral representation or Green's formulae, for this case for a point x∈Ω are given by 
Ladyzhenskaya2 as: 

where σij = − pδij + μ(∂ui/∂xj + ∂uj/∂xi) is the stress tensor corresponding to the flow 
field is the velocity field of the fundamental solution of the Stokes' equation known 
as a Stokeslet, with a corresponding pressure qk: 

and 

In order to express the boundary integral in (2) in terms of equivalent domain integrals, a 
dual reciprocity approximation is introduced (see Partridge et al.6). The basic idea is to expand 
the time-derivative ∂ui/∂t in the form, 

The above series involves a set of known functions f(x, ym) which are dependent only on 
geometry, a set of unknown vector coefficients which are time-dependent only, and ym, with 
m = 1, 2, . . . , p, been p fixed collocation points chosen to be in the closed domain where the 
function is approximated (also called nodal points). With this approximation, the domain 
integral becomes: 

To reduce the last domain integral in (5) to an equivalent boundary integral, let us define a 
new auxiliary non-homogeneous Stokes' flow field for each collocation 
point, ym, in the following way: 

Applying Green's formulae to the non-homogeneous Stokes' flow field 
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we obtain: 

or equivalently: 

Substituting the last equation into (5), the domain integral can be recast in the form: 

and using the resulting expression in (2), one finally arrives at a boundary only integral 
representation formula for the velocity field at point x ∈ Ω, in the form: 

Applying the Dirichlet boundary condition at points ξ ∈ S, i.e. ui(ξ) = Ui(ξ), to the velocity 
field given by the integral representation formula (9), and using the known jump property of 
the double layer potential, we obtain the following system of Fredholm's integral equations of 
the first kind for the unknown local stress forces, , p(y))nj(y) = фi(y), in terms of 
boundary only integrals: 

where and (ξ) is the solid angle 
at the point ξ ∈ S. 
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CHOICE OF FUNCTIONS) 

Previous work on dual reciprocity has shown6 that although a variety of functions can in 
principle be used as a basic approximation function, best results are normally obtained with 
simple expansions, the most popular of which is f = 1 + R, where R is the distance between 
pre-specified fixed collocation points, ym, and a field point x where the function is approximated, 
i.e. R = |x — ym|. In the reference given, as well as in previous DRM literature, the choice is 
based on experience rather than formal mathematical analysis. However, recent mathematical 
work, related to the theory of mathematical interpolation, and unrelated to the integral equations 
literature, based on the so-called radial functions, has partly sustained these numerical findings, 
the approximation function, f = 1 + R, defined previously, in general use in DRM is just one 
such radial function. This mathematical work provides general convergence criteria for the 
interpolation series based on radial functions. The convergence is derived from the fact that the 
behaviour of these interpolation series is local, i.e. increasing the number of fixed nodal points 
makes the interpolation more localized. It is interesting to note that although the basic functions 
are defined globally, the interpolation series have local behaviour. For the case of radial functions 
defined by the above f function in one-dimensional space, these new theories have shown that 
the resulting interpolation series happens to be a natural spline interpolation. Much of this 
mathematical work has addressed the properties of these approximations when the data points, 
collocation points ym, form an infinite regular grid, because this structure allows the order of 
accuracy to be derived when an interpolation or quasi-interpolation procedure is applied to a 
smooth underlying function. Unfortunately, the subject of non-regular grids has insufficient 
theoretical support, and is an on-going topic of mathematical research. In practical application 
of the DRM, the grid for the interpolation series is usually non-regular (for more detail on the 
theory of radial basis function approximation, see Powell7, 8 ) . 

By evaluating (4) at all nodal points and inverting, one arrives at: 

Micchelli9 has proved that for the case when the nodal points are all distinct, the matrix (Fl)-1, 
resulting from the basic function defined previously, for all positive integers p, (the dimension 
of the matrix), and n, (the dimension of the space, Rn), is always non-singular, i.e. the matrix 
is invertible. Therefore, as long as the function (x) is regular, then the above vector coefficients 

that are used in the dual reciprocity schemes, are well defined. 
In order to find the corresponding particular solution of the non-homogeneous Stokes system 

of (6a,b), we will use an approach suggested by Happel and Brenner10 to find the fundamental 
solution of the Stokes homogeneous equations, defining the second rank tensor in 
terms of an auxiliary potential ψ, as follows: 

By differentiating the above equation, we find that, for any choice of the potential ψ, the 
continuity equation (6b) is automatically satisfied. Substituting (12) into (6a), we obtain: 

If we now assume that ψ satisfies the non-homogeneous biharmonic equation: 
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the solution of which is given by μψ = R4/120 + R5/360, then, the pressure field has to satisfy 
the following equation: 

or 

The biharmonic potential ψ, thus obtained is substituted into (12) and (16), in order to 
obtain the following expression for the non-homogeneous Stokes flow field 

and 

with the stress tensor given by: 

NUMERICAL SOLUTION 

For the numerical solution of the problem, (10) is written in a discretized form in which the 
boundary integrals are approximated by a summation of integrals over individual boundary 
elements, i.e. 

Equation (19) can be written in matrix form: 

In the above system, G and H are square matrices, the coefficients of which are calculated 
by integrating products of and by the interpolation function, respectively, over each 
boundary element. In the examples considered here, quadratic eight node elements were used. 
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Details of standard boundary element techniques may be found in, for instance, Brebbia et al.11. 
By substituting (11) into (20) we obtain: 

where the dot denotes temporal derivative, and 

Equation (21) can be integrated in time using standard finite difference time-stepping 
techniques. It should be noted that the coefficients of the matrices H, G and S all depend on 
geometry only, thus they can be computed once only and stored. 

For simplicity, a two level time integration scheme will be employed; a linear approximation 
can be proposed for within each time-step in the form: 

where θu is a parameter which positions the value of between time levels m and (m + 1), 
having value 0.5 in the numerical examples, in such a way that values will be the initial 
conditions for the problem. The unknown vector density was taken at the advance time level, 
(m + 1). 

Substituting (23) into (21) one obtains: 

It should be noted that, in (24) the number of nodal points p is equal to the number of 
boundary nodes, N, plus the number of internal nodes, L. Internal nodes are needed in DRM 
in order to be able to advance in time, given that the boundary conditions, for the cases to be 
considered here, are constant in time, having zero initial condition throughout the domain. The 
formulation is not restricted to this type of problem. 

Finally, the above linear algebraic system for the unknown at the advanced time-step is 
solved using a standard Gauss procedure. Letting become values for a new time-step 
can be computed until the desired total time is reached. 

Results were obtained for four cases which will be described below, in each case the integral 
surface was discretized using 64 continuous elements with 8 source points each, in the series (4) 
we used 277 nodal points, of which 194 were the same source points of the surface elements and 
the remaining 83 corresponded to internal nodes, and a time-step of δt = 0.01 was employed. 

In the first case, we considered the unsteady flow inside a closed circular cylindrical container, 
starting from a state of rest, where the top and side walls are rotating with constant angular 
velocity, and the bottom is fixed. This problem has been analysed by Pao12 and Bertela and 
Gori13, using a finite difference scheme for low and moderate Reynolds number. The cylinder 
considered has a unit radius and is of unit length, i.e. a unit aspect ratio. A unit angular velocity 
was imposed on the top and side walls. In Tables 1a, b and c we present our results for the 
circulation at different radial distances, for different times, at three different cross-sections of the 
pipe, one located a dimensionless distance L/a = 0.25 from the moving top, one at the middle 
of the pipe, and the last at a dimensionless distance L/a = 0.25 from the fixed bottom. The 
results compare well with those given for the low Reynolds number cases in the references cited 
above. In the Tables, it can be observed that the steady state is reached in a very short time, 
this fact is due to the motion of the pipe top, as can be concluded from the comparison of the 
previous results with the case of rotating pipe wall and fixed top and bottom. For this last case, 
in Figure 1, we present our results for the circulation profile, for different times, at a cross-section' 
located at the middle of the pipe. 
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Table 1a Circulation at different radial distances for 
different times at a cross-section located a dimensionless 
distance L/a = 0.25 from the moving top 

Radial 
distance 

1.00 
0.75 
0.50 
0.25 
0.00 

t = 0.1 

1.000 
0.529 
0.217 
0.051 
0.000 

t = 0.2 

1.000 
0.543 
0.231 
0.056 
0.000 

t = 0.3 

1.000 
0.544 
0.232 
0.056 
0.000 

Table 1b Circulation at different radial distances for 
different times at a cross-section located at the middle of 
the pipe 

Radial 
distance 

1.00 
0.75 
0.50 
0.25 
0.00 

t = 0.1 

1.000 
0.484 
0.178 
0.038 
0.000 

t = 0.2 

1.000 
0.503 
0.197 
0.046 
0.000 

t = 0.3 

1.000 
0.504 
0.199 
0.047 
0.000 

Table 1c Circulation at different radial distances for 
different times at a cross-section located a dimensionless 
distance L/a = 0.25 from the fixed bottom 

Radial 
distance 

1.00 
0.75 
0.50 
0.25 
0.00 

t = 0.1 

1.000 
0.383 
0.108 
0.021 
0.000 

t = 0.2 

1.000 
0.396 
0.122 
0.026 
0.000 

t = 0.3 

1.000 
0.398 
0.123 
0.027 
0.000 

In the second case, the unsteady flow in a pipe of aspect ratio 6 was studied, having zero 
initial velocity field, and imposing a constant parabolic velocity profile, corresponding to a 
permanent Poiseuille flow with a unit maximum velocity at both ends. Figure 2 shows the 
longitudinal velocity profile, at a cross-section at the middle of the pipe, for different times. After 
a certain dimensionless time (t ≈ 0.7) the results behave similar to those of the starting flow in 
a pipe problem14. The equivalence between these two problems, after a certain time, can be 
seen in Figure 3 where it can be observed that in the vicinity of the middle of the pipe, the 
centreline longitudinal velocity is practically constant; this corresponds to a constant local 
pressure gradient, which is the condition for the starting flow in a pipe problem. In Figure 4, 
we present how the centre velocity, at the middle of the pipe, changes with time. 

The third case is similar to the previous one, except that a zero velocity profile is imposed at 
the far end. Figures 5 and 6 show the longitudinal velocity profile, at a cross-section at the 
middle of the pipe, and its value at the centreline, for different times, respectively. Finally, in 
case 4, the same problem as before was studied using a unit uniform velocity profile at the pipe 
entrance, instead of a parabolic one. Figures 7 and 8 show the results for the longitudinal velocity 
profile, at a cross-section at the middle of the pipe, and its value at the centreline, for different 
times. 

It should be pointed out that only the examples dealing with a rotational pipe can be simulated 
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physically, the others are numerical examples with some similarities to real flow phenomena; 
however, they are good to test the numerical model developed here. It is important, also, to 
point out that for each example, the internal nodes were distributed uniformly inside the pipe. 
The selection of how many internal nodes and how they are distributed is an on-going research 
topic in dual reciprocity method. 
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CONCLUSIONS 

A dual reciprocity boundary element scheme has been used to solve the unsteady Stokes equations 
for internal problems. This scheme uses the closed form steady Stokes fundamental solution 
which is very well known and the numerical integration of which is well established15. The 
scheme has the advantage of simplicity of formulation and implementation in relation to the 
alternative boundary element approaches, discussed in the Introduction, as numerical integration 
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of the fundamental solution and inverse transforms are not required. The accuracy of the method 
is shown by the results presented. Further work will now be done implementing the method for 
exterior problems and for the full Navier-Stokes equations. 
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